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Abstract: 

0975-5772

 2D and 3D Quantitative Structural Activity Relationship studies using Molecular Field Analysis (MFA) and 
Receptor surface Analysis (RSA) methods along with pharmacophore hypothesis using Catalyst version 4.7 were 
performed on a series of Phosphodiesterase 5 (PDE-5) inhibitors. The best equations with training set consisting 41 
molecules, produced r2 value of 0.788 and r2cv value of 0.618 in 2D-model and r2 value of 0.844 and r2cv value of 
0.810 in MFA-model and r2 value of 0.853 & r2cv of 0.799 in the RSA-model. Pharmacophore models were 
generated using 20 molecules as training set. The best quantitative pharmacophore model consists of one hydrogen 
bond acceptor, one hydrophobic aliphatic and two ring aromatic features. We have constructed a large set of 75 test 
compounds, and conformational studies were done as described earlier. The estimated activities were scored using 
hypothesis 1 as the pharmacophore. Out of 25 highly active compounds (<50nM), 15 were accurately predicted as 
highly active and the remaining were all predicted as moderately active. Out of the 33 moderately active compounds 
(50-1000nM), 4 were predicted as inactive and one was predicted highly active. Out of the 16 inactive compounds 
(>1000nM), 8 were predicted to be inactive and 8 were predicted to be moderately active 
Keywords: 3D QSAR, CAT B, MFA, RSA, Catalyst, Pharmacophore. 
Introduction: 
A phosphodiesterase is an enzyme that 
catalyzes the hydrolysis of phosphodiester 
bonds, for instance a bond in a molecule of 
cyclic AMP or cyclic GMP. It plays a role in 
signal transduction by regulating the 
intracellular concentration of cyclic 
nucleotides. This phosphodiesterase 
catalyzes the specific hydrolysis of cGMP to 
5'-GMP. Human phosphodiesterase 5 is 
responsible for the degradation of cyclic 
GMP in the corpus cavernosum. It is well 
known target for erectile dysfunction and 
pulmonary hypertension. The wide-ranging 
functions of this enzyme therefore make it 
an attractive drug discovery target [1 and 2]. 
We have performed Pharmacophore and 
QSAR studies for developing novel PDE-5 
inhibitors [3-8] using the Catalyst 4.7 and 
Cerius2 program suite respectively [9-29]. 
QSAR equations has been generated for 51 
PDE-5 inhibitors employing Molecular Field 
Analysis (MFA) as well as Receptor surface 
Analysis (RSA) using Genetic function 
approximation (GFA) as regression method. 
We intend to employ the pharmacophore 
information to execute 3D-database virtual 
screening to discover reliable and potential 
Novel Lead structure against PDE-5 
inhibitors for treatment of erectile 

dysfunction. 
Materials and Methods: 
All molecular modeling works were carried 
out by using DISCOVERY STUDIO 2.5 
software package (Accelrys, San Diego, 
CAUSA). [All the catalyst functions are in-
built modules of Discovery Studio].  
Experimental work: 
40 molecules forming the training set were 
used to generate the QSAR equation. For 
MFA studies molecular field was created 
using proton and methyl groups as probes, 
which represent electrostatic and steric 
fields respectively. For RSA studies 
chemical properties namely charge, 
electrostatic potential, hydrogen bonding 
propensity and hydrophobicity associated 
with each surface point were calculated. For 
generating equations, only 10% of the total 
descriptors whose variance was highest were 
considered for further analysis. Regression 
analysis was carried out using G/PLS 
method consisting of over 50,000 
generations with a population size of 100 
(Table. 2.1 and 2.2) 
Catalyst version 4.7 was used to generate 
Pharmacophore models. 20 molecules 
forming the training set were used to 
generate Hypogen hypothesis. 
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Table 1: Statistical details of 2D, MFA, & RSA analysis
  

Serial No. Statistics 2D MFA RSA 

01 R 0.888 0.919 0.923 

02 r2 0.788 0.844 0.853 

03 xvr2 0.618 0.810 0.799 

04 Bsr2 0.655 0.837 0.846 

05 PRESS 10.490 5.227 5.513 

 
a. MFA: Molecular Field Analysis, b. RSA: Receptor surface Analysis, c. R 2: Regression Analysis, d. XVR2: Cross 
validated R2, e. PRESS: Predicted sum of squared residuals. 

 
Table 2.1: Training Set with Experimental and Predicted Activity
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Compound 
No. 

Scaffold 
class HET/R/X Y 

Experimental Predicted 
IC50 
nM pIC50 2D MFA RSA 

1 A N

N

N

H

 200 -2.300 -2.465 -2.219 -2.492 

2 A 
N

N

H

 80 -1.900 -2.174 -2.321 -2.354 

3 A 
N

N
 300 -2.480 -2.107 -2.439 -2.535 

4 A 
N

 70 -1.850 -1.732 -1.898 -1.853 

5 A 
N

 50 -1.700 -1.814 -1.886 -1.927 

6 A 
S

 100 -2.000 -2.118 -2.306 -1.921 
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7 A 
S

 60 -1.780 -1.695 -1.586 -1.482 

8 A 
S

 50 -1.700 -2.023 -1.983 -1.868 

9 A 
S

 80 -1.900 -1.622 -1.985 -1.570 

10 A 
N

N  8 -0.900 -1.367 -1.249 -0.920 

11 A 
O

N
 100 -2.000 -2.001 -1.856 -2.264 

12 A 
N

S
 30 -1.480 -1.887 -1.836 -1.840 

13 B O-Isopropyl  40 -1.600 -1.109 -1.249 -1.243 
14 C Butyl  6 -0.780 -0.776 -0.956 -0.868 
15 C Tertiary butyl  20 -1.300 -0.846 -0.957 -1.119 
16 C CH2CF3  7 -0.850 -0.735 -0.956 -1.014 

17 D 
N

OO
Me 4 -0.600 -0.823 -0.550 -0.358 

18 D NO2 Me 4 -0.600 -0.983 -0.549 -0.597 
19 D NH2 Et 7 -0.850 -0.678 -0.877 -0.692 
20 D N(Me)2 Me 5 -0.700 -0.918 -0.550 -0.380 
21 D N(Me)2 Et 4 -0.600 -0.928 -0.550 -0.725 
22 D NHSO2Me Me 3 -0.480 -0.334 -0.551 -0.368 
23 D NHSO2Me Et 4 -0.600 -0.234 -0.340 -0.528 
24 D NHCOMe Et 2 -0.300 -0.709 -0.257 -0.503 

25 D 
F

O

N

H
Me 2 -0.300 -0.443 -0.550 -0.430 

26 D NHCOOMe Me 2 -0.300 -0.747 -0.550 -0.477 
27 D NHCONH2 Me 2 -0.300 -0.849 -0.550 -0.577 
28 D NHCONHEt Me 3 -0.480 -0.545 -0.550 -0.523 
29 D NHCSNHEt Me 3 -0.480 -0.345 -0.550 -0.545 
30 D NHCSNHCOOEt Me 2 -0.300 -0.152 -0.550 -0.645 

31 D 
N

N N
H

Me 20 -1.300 -0.387 -0.550 -0.372 

32 D 
S

Me 5 -0.700 -0.769 -0.550 -0.732 
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33 D 
S

Me 4 -0.600 -0.661 -0.550 -0.396 

34 D 
S

N

Me 3 -0.480 -0.882 -0.550 -0.538 

35 D 
S

N
Me 2.5 -0.400 -0.537 -0.551 -0.519 

36 D 
S

N
Et 2 -0.300 -0.412 -0.257 -0.468 

37 D 
S

N
Me 2.5 -0.400 -0.513 -0.551 -0.566 

38 D 
S

N
Et 3 -0.480 -0.454 -0.238 -0.496 

39 D 
S

N Me 2.5 -0.400 -0.322 -0.550 -0.568 

40 D 
S

N Et 3 -0.480 -0.316 -0.257 -0.440 

41 D 
S

N
N

Et 2 -0.300 -0.233 -0.257 -0.437 

Et denotes Ethyl, Me denotes Methyl, Pr denotes Propyl
 
All structures were built and minimized 
within the Catalyst software package, and 
conformational analysis of each molecule 
was implemented using the poling 
algorithm. Hypotheses were generated from 
a collection of conformational models of 
compounds spanning activities of 4-5 orders 
of magnitude.  
Results and discussion: 
Molecular field analysis (MFA) 
2D equation: 
Activity = 32.1973 + 0.11033* “MW” + 
0.036525* “Area” –0.163124* “VM” – 
31.2449* “Density”  
The term MW +0.11033 denotes the 
molecular volume and the term Vm –
0.163124 denotes the molecular volume 
MFA equation: 

Activity = -2.57287 + 0.009541* 
“CH3/549” + 0.022934* “CH3/276” + 
0.020199 * “CH3/534” + 0.02451* 
“CH3/771” 
MFA equation that for the probe point of 
CH3 at position 534 in MFA grid indicates 
bulky groups are favored to decrease the 
activity. Stereo view of MFA grid is shown 
in Fig. 1 
Receptor surface analysis (RSA) 
RSA equation: 
Activity_1 = -1.08728 + 1.35507* 
“VDW/3789” -2.1011* “ELE/2083” + 
3.04312* “ELE/2937” – 1.57952* 
“VDW/3091”  
The term ELE/2083 in the RSA equation 
indicates electronegative groups are favored 
to enhance the activity.  
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Table 2.2: Test Set with Experimental and Predicted Activity

Compound 
No. 

Scaffol
d class HET/R/X Y 

Experimental Predicted 
IC50 
(nM) pIC50 2D MFA RSA 

 
 

1 
 

A N
N

H  
_ 200 -2.18 -2.025 -2.110 -1.781

2 B OEt _ 30 -1.48 -1.215 -1.249 -0.995
3 B SPr _ 2000 -3.300 -2.465 -2.219 -2.492
4 C Et _ 2 -0.300 -0.806 -0.956 -0.871
5 C Benzyl _ 70 -1.850 -0.960 -1.251 -1.870
6 D NH2 Me 10 -1.000 -0.818 -1.170 -0.683

7 D S

O

N

H

Me 1.5 -0.180 -0.532 -0.550 -0.437

8 D N

N

O

N

H

 

Me 3.5 -0.540 -0.761 -0.55. -0.491

9 D 
N N

N N
H

H

N

H

H

Me 5 -0.700 -0.401 -0.550 -0.878

10 D 
N N

NN

H

H

Et 20 -0.230 -0.402 -0.257 -0.356

 
Table 3: 10 Pharmacophore Hypotheses Generated Using 20 Training Set Molecules

Hypothesisa 
No 

Total Cost 

Cost 
Difference 
(Null cost – 
Total cost) 

Error 
Cost 

RMS 
Correlation 

(r) 
Featuresb 

01 100.626 49.312 77.643 1.018 0.940 A H R R 

02 102.325 47.613 81.886 1.208 0.909 A H H R 

03 102.822 47.116 81.212 1.180 0.915 A H R R 

04 103.198 46.74 82.407 1.230 0.906 A H R R 

05 103.805 46.133 83.487 1.273 0.898 A H H R 
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06 103.839 46.099 83.977 1.292 0.894 A H H R 

07 104.005 45.933 84.916 1.328 0.887 A H H R 

08 104.93 45.008 84.707 1.320 0.889 A H H R 

09 104.954 44.984 86.295 1.379 0.877 A H H H R 

10 105.385 44.553 83.560 1.276 0.900 A A H R 

a. Null cost = 149.938, Fixed cost = 85.9304, Configuration = 17.5334, Weight = 1.963, b. A, Hydrogen Bond 
Acceptor; H, Hydrophobic Aliphatic; R, Ring Aromatic. 
  

Fig 1: Stereo view of rectangular molecular field surrounding aligned molecules. Some of the 
field descriptors, which are involved in the equation, are indicated. Correlation of MFA (0.844)
 

Fig 2: Stereo view of the receptor surface which represents the vitural active site. Some of the 
RSA descriptors that constitute the equation are labeled. Correlation of RSA (0.853). 
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Fig 3: Pharmacophore Mapping
 

Chemical Structures of the 20 Training Set Molecules Applied to HypoGen Pharmacophore Generation (PDE-5 
Activities Are Given as IC50 Values) 
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20 Training set molecules used for validation studies
 

 
 

  

1, IC50 0.03 nM 2, IC50 0.3 nM 3, IC50 0.95 nM 4, IC50 3 nM 

 
 

  

5, IC50 7 nM 6, IC50 10 nM 7, IC50 19 nM 8, IC50 27 nM 

  

9, IC50 48 nM 10, IC50 57 nM 11, IC50 75 nM 12, IC50 130 nM 

 

 

 

 
13, IC50 170 nM 14, IC50 300 nM 15, IC50 580 nM 16, IC50 750 nM 

 
 

17, IC50 1000 nM 18, IC50 2900 nM 19, IC50 4000 nM 20, IC50 6200 nM 
RSA Model with Hydrophobic property and 
Hydrogen bonding mapped onto it is shown 
in Fig. 2. 
Statistical details of 2D, MFA, & RSA 
analysis were given in Table. 1  

Pharmacophore Hypothesis Generation 
Training set consists of 20 compounds tested 
against PDE-5 was used to develop 
Pharmacophore hypotheses.  
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75 Test set molecules used for validation studies
 

 
 

 

1, IC50 1.6 nM 2, IC50 1.6 nM 3, IC50 1.9 nM 4, IC50 2.2 nM 

 
 

 

5, IC50 3.1 nM 6, IC50 4 nM 7, IC50 4.4 nM 8, IC50 5.3 nM 

 

  

9, IC50 5.4 nM 10, IC50 6.8 nM 11, IC50 8 nM 12, IC50 11 nM 

 

  

13, IC50 11 nM 14, IC50 12 nM 15, IC50 13 nM 16, IC50 19 nM 

  
 

 

17, IC50 19 nM 18, IC50 20 nM 19, IC50 22 nM 20, IC50 30 nM 
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21, IC50 30 nM 22, IC50 39 nM 23, IC50 43 nM 24, IC50 49 nM 

 
 

 

25, IC50 50 nM 26, IC50 58 nM 27, IC50 63 nM 28, IC50 100 nM 

 
  

 
29, IC50 100 nM 30, IC50 100 nM 31, IC50 100 nM 32, IC50 110 nM 

 

  

 
33, IC50 140 nM 34, IC50 140 nM 35, IC50 140 nM 36, IC50 150 nM 

  

 
 

37, IC50 160 nM 38, IC50 180nM 39, IC50 200 nM 40, IC50 200 nM 
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41, IC50 200 nM 42, IC50 225 nM 43, IC50 230 nM 44, IC50 230 nM 

 

 

 
 

  

45, IC50 2250 nM 46, IC50 275 nM 47, IC50 330 nM 48, IC50 380 nM 

  
 

 
 

 
  

 
49, IC50 610 nM 50, IC50 800 nM 51, IC50 800 nM 52, IC50 800 nM 

 
  

 
 
 

 
 

53, IC50 810 nM 54, IC50 900 nM 55, IC50 960 nM 56, IC50 1000 nM 

 
 

 
 

 
 

  

57, IC50 1000 nM 58, IC50 1000 nM 59, IC50 1000 nM 60, IC50 1200 nM 
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61, IC50 1400 nM 62, IC50 01500 nM 63, IC50 1900 nM 64, IC50 2100 nM 

  

 
 

 

 

65, IC50 2100 nM 66, IC50 2400 nM 67, IC50 2900 nM 68, IC50 3100 nM 

  

 
 

 

69, IC50 3300 nM 70, IC50 4500 nM 71, IC50 5000 nM 72, IC50 6000 nM 

 
  

 

73, IC50 7500 nM 74, IC50 10000 nM 75, IC50 1000 nM  
A total of 10 hypotheses were generated and 
its different cost values, correlation 
coefficients (r), RMS deviations, and 
pharmacophore feature definitions are listed 
in Table 3. For the training set the accuracy 
in predicting active and inactive compounds 
was 90%. The selected pharmacophore 
hypothesis yielded a RMS deviation of 
1.018 and a correlation coefficient of 0.940 
with a cost difference of 49.312. The best 

pharmacophore model was validated on 75 
test molecules to give correlation value of 
0.898. For the test set, the accuracy in 
predicting active compounds was greater 
than 10%, while 14% and 6% representing 
both false positive and negative respectively. 
The mapping of Hypothesis1 model onto an 
active and inactive training set Compound 
(IC50 = 0.03 nM and 6200 nM respectively 
) is shown in Fig 3. 
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Conclusion: 
The results from these QSAR analyses 
provide a useful insight into the structural 
and electrostatic requirements for binding of 
a ligand to the PDE-5 receptor and these 
derivatives 2D, MFA and RSA could 
provides us useful information for 
developing extremely potent ligands leading 
to potential PDE-5 inhibitors. In 2D QSAR, 
the shape of the molecule is more important 
in relation to biological activity. In 3D 
QSAR, MFA studies shows that steric buck 
groups seem to play a crucial role on 
preferred locations on the analogs, such that 
it improves the activity and RSA shows the 
role of vander waals and electrostatic 
interactions. Further, the knowledge of this 
four-feature pharmacophore hypothesis for 
PDE-5 inhibitors can be very useful for 
virtual screening to design more potent lead 
moieties for the treatment of various types 
of Erectile Dysfunction. 
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