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Abstract: 
Quantitative structure activity relationship (QSAR) has been established for 87 diphenyl-pyridine 
analogues having inhibitory activity against human cannabinoid receptor 1. The genetic algorithm and 
multiple linear regressions were used to generate the relationship between biological activity and 
calculated descriptors. The validation of the model was done by cross validation, randomization and 
external test set prediction. The best model was developed using seven descriptors having r2 value of 
0.906, PRESS value 6.569, BS r2 value 0.844, BS r2 Err = 0.236, XV r2 value of 0.952, and external 
validation using test set (r2

pred = 0.836). 
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1. INTRODUCTION    
Modulation of the cannabinoid receptor 1 
(CB1; predominantly found in the central 
nervous system) has been demonstrated to have 
powerful effects on feeding behavior in both 
humans and other animals1. Initially, the search 
for CB1 antagonists/inverse agonists was based 
on the structure of known agonists like Delta9-
THC2-5, the first potent and selective hCB1 
inverse agonist 1 (SR141716, Fig. 1) was 
reported in 1994 by researchers at Sanofi-
Synthelabo and belonged to a new family of 
CB1 ligands based on a 1,5-diphenylpyrazole 
structure 2-4,6.  CB1 agonists, Delta9-THC 
stimulate food intake, while CB1 inverse 
agonists such as SR141716A6 suppress food 
intake demonstrating the utility of CB1 
inhibition for the treatment of obesity7-10. 
Quantitative structure-activity relationships 
(QSAR) use the concept of correlating 
structural or property descriptors of compounds 

with their activities. QSAR is a useful method 
for the design of bioactive compounds and the 
prediction of activity from the parameters 
calculated from chemical structure of 
compound. There are many examples available 
in literature where QSAR models have been 
used for screening of compounds from the 
chemical databases 11–14.  
Herein, we report a QSAR study to rationalize 
the physico-chemical and structural features 
among the reported diphenyl-pyridine 
analogues as CB1 inverse agonists. Ever since 
the work of Hansch, QSAR has been utilized as 
a major tool in the field of drug discovery to 
explore ligand-receptor/enzyme interactions, 
especially when the structure of the target is not 
known. In the present study, we have collected 
IC50 values for a large set of CB1 ligands, and 
employing QSAR methods, used the data to 
create QSAR models to eventually show 
predictive power. 
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1.  (SR141716) hCB1 IC50 = 6 nM        2. (hcb1 IC50 = 530 nM) 

Figure 1: Structure of SR141716 and the Merck lead structure 
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Table 1: 5 best QSAR models generated using various combinations of descriptors 

Activity_1 = 2.63749 – 0.39853 * “CHI-2” + 0.032977 * “Jurs-DPSA-3” – 0.768911 * “Atype_Cl_90” + 0.026303 * 
“MW” - 1.13257 * ”Atype_Unknown” - 37.7663 * “Jurs-FPSA-3” – 0.037164 * “MR” 
 

Activity_2 = 5.91448 + 0.457079 * “Hbond acceptor” – 1.45535 * “Atype_Unknown” – 0.781137 * “Atype_Cl_90” – 
34.0323 * “Jurs_FPSA_3” + 0.0006555 * “Jurs-DPSA-2” + 0.035297 * ”S_sCl” – 0.307141 “Rule of 5 violation” – 
0.157525 * “Atype-C-26” 
 

Activity_3 = 5.53995 – 1.45476 * “Atype_Unknown” – 53.1148 * ”Jurs-FPSA-3” – 0.039103 * “S_tN” – 0.027645 * 
“MR” – 0.304223 * “Hbond acceptor” + 0.328116 * “CHI-V-1” – 0.63362 * ” Atype_Cl_90” + 0.035493 * ” Jurs-PPSA-3” 
 

Activity_4 = 5.557 + 0.304324 * ”Hbond acceptor” + 0.32616 * “CHI-V-1” – 0.633127 * “Atype-CI-90” + 0.035526 * 
“Jurs-PPSA-3” – 1.45466 * “Atype_Unknown” – 53.1779 * “Jurs-FPSA-3” – 0.027527 * “MR” – 0.38082 * 
“Atype_N_74” 
 

Activity_5 = 4.85497 + 0.51058 + * “CHI-V-1” – 0.619722 * “Atype_CI-90” + 0.332245 * “Hbond acceptor” – 1.3507 
*”Atype-Unknown” – 47.5835 “Jurs-FPSA-3” – 0.020589 * “MR” – 0.197291 * “CHI_2” + 0.025927 * “ Jurs–DPSA-3” 

 
2. MATERIALS AND METHODS: 
2.1. Data set and Molecular modeling 
The inhibitory activity of the 87 diphenyl-
pyridine15-17 derivatives was taken from 
literature in terms of IC50 against human 
cannabinoid receptor 1. These compounds were 
collected from literature on the basis of two 
main criteria, firstly there should same scaffold 
and till date there is no QSAR work done in 
this set of compounds. Chemical structures and  

 
their respective biological properties (divided 
in 2 sets of test set and training set) are listed in 
table 3, 4. The compounds were selected based 
on a wide range of their activities (ranging 
from 0.91 nM to 2800 nM) measured under the 
same experimental conditions. The IC50 values 
were then converted to their pIC50 values to get 
the linear relationship in the equation using the 
following formula: 
pIC50 = - log IC50.  

Table 2: Chemical structures of all compounds with observed activity included in the study 

 
Compound no R1 R2 R3 R4 IC50 

1 CN 2,4-diCl 4-Cl 526 

2 - 2,4-diCl 4-Cl 340 

3 - 2,4-diCl 4-Cl 43 

4 - 2,4-diCl 4-Cl 32 

5 - 2,4-diCl 4-Cl 53 

6 - 2,4-diCl 4-Cl 95 

7 - 2,4-diCl 4-Cl 35 
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Compound no R1 R2 R3 R4 IC50 

8 - 2,4-diCl 4-Cl 56 

9 - 2,4-diCl 4-Cl 210 

10 - 2,4-diCl 4-Cl 31 

11 CN 4-NMe2 OMe 2800 

12 CN 4-Cl - 11 

13 CN 2,4-diCl 4-Cl 3.1 

14 CN 2,4-diCl 4-Cl 1.8 

15 CN 2,4-diCl 4-Cl 2.7 

16 CN 2,4-diCl 4-Cl 5.8 

17 CN 2,4-diCl 4-Cl 3.4 

18 CN 2,4-diCl 4-Cl 18 

19 CN 4-Cl 4-Cl 7.2 

20 CN 2,4-diCl 4-F 6.3 

21 CN 2,4-diCl 4-Me 66 

22 CN 2,4-diF 4-F 18 

23 2,4-diCl 4-Cl 7 

24 
 

2,4-diCl 4-Cl 22 

25 2,4-diCl 4-Cl 1.4 

26 
 

2,4-diCl 4-Cl 6 

27 
 

2,4-diCl 4-Cl 18 

28 

  
2,4-diCl 4-Cl 41 

29 
 

2,4-diCl 4-Cl 3.5 
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Compound no R1 R2 R3 R4 IC50 

30 
 

2,4-diCl 4-Cl 1.3 

31 
 

2,4-diCl 4-Cl 1.9 

32  2,4-diCl 4-Cl 2.9 

33 
 

2,4-diCl 4-Cl 3.1 

34 
 

2,4-diCl 4-Cl 1.9 

35 
 

2,4-diCl 4-Cl 1.7 

36 
 

2,4-diCl 4-Cl 1.5 

37 
 

2,4-diCl 4-Cl 1.8 

38 2,4-diCl 4-Cl 32 

39  2,4-diCl 4-Cl 17 

40  2,4-diCl 4-Cl 21 

41 
 

 2,4-diCl 4-Cl 3.4 

42 
 

2,4-diCl 4-Cl 5.2 

43 
 

2,4-diCl 4-Cl 1300 

44 

 

Cl 2,4-diCl 4-Cl 52 

45 
 

Cl 2,4-diCl 4-Cl 58 

46 
 

Cl 2,4-diCl 4-Cl 400 

47 

 

Cl 2,4-diCl 4-Cl 460 
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Compound no R1 R2 R3 R4 IC50 

48 

 

- 2,4-diCl 4-Cl 65 

49 
 

- 2,4-diCl 4-Cl 210 

50 
 

- 2,4-diCl 4-Cl 480 

51 
 

- 2,4-diCl 4-Cl 1.3 

52 CN 2-Cl 4-Cl 8 

53 CN 2,4-diCl 4-Cl 11 

54 CN 2,4-diCl 4-Cl 14 

55 CN 2,4-diCl 4-Cl 4 

56 CN 2,4-diCl 4-Cl 7 

57 CN 2,4-diCl 4-Cl 26 

58 CN 2,4-diCl 4-Cl 3.7 

59 CN 2,4-diCl 4-Cl 0.91 

60 CN 2,4-diCl 4-Cl 3.9 

61 CN 2-Cl 4-Cl 25 

62 CN 2,4-diCl 4-Cl 154 

63 CN 2,4-diCl 4-Cl 50 

64 CN 2,4-diCl 4-Cl 10 

65 CN 2,4-diCl 4-Cl 11 

66 CN 2,4-diCl 4-Cl 6.6 

67 CN 2,4-diCl 4-Cl 5.7 

68 CN 2,4-diCl 4-Cl 89 

69 CN 2,4-diCl 4-Cl 19 
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Compound no R1 R2 R3 R4 IC50 

70 CN 2,4-diCl 4-Cl 12 

71 CN 2,4-diCl 4-Cl 5.7 

72 CN 2,4-diCl 4-Cl 29 

73 CN 2,4-diCl 4-Cl 20 

74 CN 2-Cl 4-Cl 108 

75 CN 2-Cl 4-Cl 37 

76 CN 2-Cl 4-Cl 3.8 

77 CN 2-Cl 4-Cl 12 

78 CN 2-Cl 4-Cl 5.9 

79 CN 2-Cl 4-Cl 44 

80 CN 2-Cl 4-Cl 39 

81 CN 2-Cl 4-Cl 27 

82 CN 2-Cl 4-Cl 38 

83 CN 2-Cl 4-Cl 165 

84 2,4-diCl 4-Cl 11 

85 

 
 

2,4-diCl 4-Cl 3.5 

86 

 
 

2,4-diCl 4-Cl 5.6 

87 

 
 

2,4-diCl 4-Cl 80 

 
 
 
 

 
 
 

Rituparna Sarma et al / Journal of Pharmaceutical Science and Technology Vol. 3 (1), 2011,477-493

482



From the original list of 87 selected compounds 
as CB1 inverse agonists, 31 were listed as test 
set compounds (table 4) while the rest 56 were 
used as training set compounds (table 3). It was 
taken into consideration that compounds with 
wide range of activities were included in both 
the training and the test sets. The structures of 
compounds used in the study along with 
observed IC50 values are provided in Table 2. 
 

The three-dimensional structures were 
constructed by using Cerius2 programming 
package version 4.1118. Energy minimization 
was performed using Universal force field and 
further geometric optimization of these 
compounds was done using the semi-empirical 
program MOPAC 6.0 and applying the AM1 
Hamiltonian. The MOPAC charges were used 
for entire calculations. 
 

Table 3: Actual, Predicted and residual activities 
of Training set compounds 

Compound 
No 

pIC50 
G/PLS 

Predicted 
Activity 

G/PLS 
Residuals 
Activity 

1 6.279 6.348 -0.069 
3 7.367 7.394 -0.027 
4 7.495 7.484 0.011 
6 7.022 7.014 0.008 
8 7.252 6.886 0.366 
10 7.509 7.428 0.081 
13 8.509 8.291 0.218 
15 8.569 8.641 -0.072 
17 8.469 9.239 -0.770 
18 7.745 7.806 -0.061 
20 8.201 8.072 0.129 
21 7.180 7.790 -0.610 
23 8.155 7.683 0.472 
24 7.658 7.777 -0.119 
26 8.222 8.045 0.177 
27 7.745 7.864 -0.119 
29 8.456 8.206 0.250 
30 8.886 9.181 -0.295 
32 8.538 8.047 0.491 
33 8.509 8.369 0.140 
34 8.721 8.747 -0.026 
36 8.824 9.171 -0.347 
37 8.745 8.472 0.273 
38 7.495 7.407 0.088 
40 7.678 7.837 -0.159 
41 8.469 7.920 0.549 
43 5.886 6.215 -0.329 
44 7.284 7.296 -0.012 
46 6.398 6.146 0.252 

Compound 
No 

pIC50 
G/PLS 

Predicted 
Activity 

G/PLS 
Residuals 
Activity 

47 6.337 7.199 -0.862 
49 6.678 7.053 -0.375 
50 6.319 6.215 0.104 
52 8.097 7.899 0.198 
53 7.959 8.269 -0.310 
55 8.398 8.420 -0.022 
56 8.155 8.458 -0.303 
58 8.432 8.609 -0.177 
59 9.041 8.450 0.591 
61 7.602 7.643 -0.041 
62 6.812 7.195 -0.383 
63 7.301 7.887 -0.586 
65 7.959 8.078 -0.119 
66 8.180 8.112 0.068 
67 8.244 8.161 0.083 
69 7.721 7.640 0.081 
70 7.921 7.790 0.131 
71 8.244 8.170 0.074 
74 6.967 6.751 0.216 
75 7.432 7.131 0.301 
77 7.921 7.965 -0.044 
78 8.229 7.994 0.235 
79 7.357 7.419 -0.062 
81 7.569 7.373 0.196 
82 7.420 7.343 0.077 
85 8.456 8.509 -0.053 
87 7.097 7.453 -0.356 
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Table 4: Actual, Predicted and residual 
activities of Test Set compounds 

Compound 
No 

pIC50 
G/PLS 

Predicted 
Activity 

G/PLS 
Residuals 
Activity 

2 6.469 7.161 -0.692 
5 7.276 7.106 0.170 
7 7.456 7.256 0.200 
9 6.678 7.124 -0.446 
11 5.553 5.813 -0.260 
12 7.959 7.971 -0.012 
14 8.745 8.661 0.084 
16 8.237 8.255 -0.018 
19 8.143 8.451 -0.308 
22 7.745 7.659 0.086 
25 8.854 7.969 0.885 
28 7.387 6.902 0.485 
31 8.721 8.415 0.306 
35 8.770 8.825 -0.055 
39 7.770 7.944 -0.174 
42 8.284 8.136 0.148 
45 7.237 7.477 -0.240 
48 7.187 7.307 -0.120 
51 8.886 8.754 0.132 
54 7.854 8.197 -0.343 
57 7.585 8.125 -0.540 
60 8.409 8.832 -0.423 
64 8.000 7.639 0.361 
68 7.051 7.528 -0.477 
72 7.538 7.661 -0.123 
73 7.699 8.699 -1.000 
76 8.420 8.797 0.377 
80 7.409 7.316 0.093 
83 6.783 7.296 -0.513 
84 7.959 8.288 -0.329 
86 8.252 8.031 0.221 

 
2.2 Descriptor calculation 
Conventional QSAR studies require the 
calculation of molecular descriptors, such as 
connectivity indices, 2D autocorrelation 
descriptors, and Burden eigen values, which are 
used as independent variables in QSAR 

modeling. The Cerius2 software was used to 
generate the descriptors for the QSAR studies. 
This procedure afforded more than 100 
descriptors which were subjected to the 
following selection strategy. Different 
descriptor classes such as E-state indices, 
electronic, spatial, structural, thermodynamic 
and topological descriptors were calculated for 
the molecules in the dataset19-21. Description of 
descriptors included in the model is listed 
below. 
Different types of descriptors: 
Type Descriptors 

Structural 

Molecular weight, number of 
chiral centers, number of 
rotatable bonds, number of 
hydrogen-bond acceptors, 
number of hydrogen-bond 
donors 

Electronic 

Sum of atomic polarizabilities, 
sum of partial charges, sum of 
formal charges, dipole moment, 
energy of highest occupied 
orbital (HOMO), energy of 
lowest unoccupied orbital 
(LUMO), superdelocalizability 

Topological 

Kier and Hall molecular 
connectivity index, Wiener 
index, Zagreb index, Hosoya 
index, Balaban indices 

E-state 
indices 

Electrotopological-state indices 

Spatial 
Jurs descriptors, radius of 
gyration, PMI, area, shadow 
indices, density, Vm 

Thermo 
dynamic 

Molar refractivity, heat of 
formation, log of the partition 
coefficient, log of the partition 
coefficient atom type value, 
desolvation free energy of 
water, desolvation free energy 
of octanol 

 
More than 100 descriptors were calculated and 
some were rejected because they contain a 
value of zero for all the compounds. The inter-
correlation of descriptors was taken into 
account and highly correlated descriptors were 
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grouped together and the descriptor with the 
highest correlation with biological activity was 
taken from the group. The descriptors which 
remained after removing the ones which had 
zero values for all compounds were subjected 
to genetic function approximation (GFA) for 
selection of variables to obtain the QSAR 
models using genetic algorithm principles.  
 
2.3 Regression analysis 
GFA is a genetics based method of variable 
selection, which combines Holland’s genetic 
algorithm (GA) with Friedman’s multivariate 
adaptive regression splines (MARS) 22, 23. The 
GFA method works by generating equations 
(set at 100 by default in the Cerius2 software) 
randomly. Then pairs of ‘‘parent’’ equations 
are chosen for ‘‘crossover’’ operations from 
this set of 100 equations randomly. The number 
of crossing over was set by default at 5000. The 
goodness of each progeny equation is assessed 
by Friedman’s lack of fit (LOF) score which is 
described by the following formula:  
 

LOF = LSE/1{1-(c + dp)/m2} 
 

Where LSE is the least-squares error, c is the 
number of basic functions in the model, d is 
smoothing parameter, p is the number of 
descriptors and m is the number of observations 
in the training set21. The smoothing parameter 
that controls the scoring bias between equations 
of different sizes was set at default value of 1.0 
and the new term was added with a probability 
of 50%. Only the linear equation terms were 
used for model building. The best equation out 
of the 100 equations was taken based on the 
statistical parameters such as regression 
coefficient, adjusted regression coefficient, 
regression coefficient cross validation and F-
test values. 
 
2.4 Statistical analysis 
The statistical model generated in our study 
was investigated using the PLS leave-one-out 
(LOO) method. The predictive ability of the 
model was assessed by their LOO cross-
validated (q2) values. This method was used to 
determine the optimum number of PLS 

components and the stability of the model. The 
number of components used in the final non 
validated model was optimized to give the 
highest q2 value and the lowest standard error 
of prediction. The non cross-validated model 
was assessed by the conventional correlation 
coefficient r2 and F-value. The external 
validation process can be considered the most 
reliable validation method, as cross-validation 
procedures may lead to very optimistic 
statistics24, 25. External validation was 
performed with a test set of 31 compounds, 
which were not included in the training set 
during the process of QSAR model generation. 
 
3. Results and Discussion    
3.1 Equations of Quantitative Structure 
Activity Relationship: 
It is a computer-based statistical model that 
correlates descriptor variations to quantitative 
changes in biological activity. A set of 87 
inverse agonists of CB1 were considered for 
the studies, the molecules were divided into 
training set (56) and test set (31) on the basis of 
structural diversity. This could give light to the 
structural features important for CB1 binding 
as well as help to club the most correlated 
descriptors which could be further explored in 
QSAR modeling. However the predictive 
model should have all ranges of activity in 
training set so that the model can categorize the 
new molecules according to activity, further for 
proper validation of the model the test set 
should also contain all ranges of activity. 
Accordingly we have considered all ranges of 
activity in training and test set. 130 descriptors 
were calculated for each molecule and were 
used for generating QSAR model. A QSAR 
model was constructed by correlating the 
activity of the inverse agonists with descriptors 
using G/PLS regression method in Cerius2. A 
population of 100 randomly generated 
equations was initially built by utilizing the 
default settings and the built-in descriptors. 
These equations were then run for 50,000 
generations, which means that, for each 
generation, two better scoring equations are 
selected as parents to continue further equation 
generation. Parts of each parent equation are 
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then pooled into a child equation. Only 
improved scoring child equations will be 
incorporated in the parent population and 
replace for the worst of the parents. This will 
result in the best 100 equations for the next 
evolution iteration. The scoring of the 
equations was authenticated by calculating the 
predictive residual sum of squares (PRESS) 
and through the cross validation test. The best 
QSAR model was chosen on the basis of the 
highest q2 and the lowest difference between q2 
and r2. Furthermore, this equation was 
validated by assessing its predictive power on a 
set of 31 test compounds. The plot between 
actual and predicted pIC50 values for training 
set and test set is shown in Fig.2 and Fig. 3.  
 

 
 
Figure 2: Plot of actual versus predicted pIC50 
of the training set molecules 
 
Number of descriptors necessary and sufficient 
for the QSAR equation was first determined. 
The molecules 86, 76 in the dataset 
occasionally disturbed the robustness of the 
model and it was kept in the test set. The same 
molecules turned out to be an outlier with a 
residual of 1.221, 1.377 (Fig. 4). The probable 
reason for the high residual of this two 
compound is due to its very low activity (IC50 
= 3.8, 5.6) in comparison to other compounds. 
Statistical analysis was done by applying the 
genetic partial least square (PLS) procedure to 
the appropriate columns of the QSAR table and 
using the standard scaling method. Leave-one-

out (LOO) method (one compound is removed 
from the dataset and its activity is predicted 
using the model derived from the rest of the 
dataset and r2 value (cross validated r2 or q2) is 
computed using the predicted values of the 
omitted molecules) was used for the cross 
validation of the equation, with a minimum 
column filtering value (F) of 20 kcal/mol to 
hasten the analysis and reduce noise. Optimum 
number of components obtained from the leave 
one out cross-validation analysis was utilized 
for the non cross-validation to obtain 
conventional r2. The predictive credibility of 
the model was analyzed by group cross-
validation Leave-one-out (LOO) method with 
10 groups and bootstrapping analysis. 
 

 
 
Figure 3: Plot of actual versus predicted pIC50 
of the test set molecules 
 
Basing on the test set compounds, the 
predictive correlation co-efficient (r2

pred) is 
computed using the following equation: 
           

r2
pred = (SD - PRESS)/SD (1) 

 
Where SD is the sum of squared deviations 
between the biological activities of each 
molecule and the mean activity of the training 
set molecules and PRESS is the sum of squared 
deviations between the predicted and actual 
activity values for every molecule in the test 
set. 
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Figure 4: Histogram of residuals of the test set molecules 

 
3.2 Validation Test 
All 87 molecules were used for modeling in 
order to incorporate as much structural 
information as possible. Apart from Equation 1, 
we have also described 4 other next best 
equations with varying number of descriptors. 
These equations are statistically evaluated with 
their varied descriptors and can be compared 
with the best equation, describing their 
potential activities as CB1 inverse agonist. The 
top 5 equations/models generated by the G/PLS 
statistical method for a training set of 56 cb1 
inverse agonists are represented in Table 1. Out 
of these 5 equations the equation I having the 
particular combination of 7 descriptors was 
having the best predictive ability compared to 
the rest of the equations, confirming the 
contributions of these descriptors towards the 
biological activity. The statistical parameters 
for all the 5 equations are described in Table 5. 
On comparison of these statistical parameters, 
the best model equation I is having better 
internal validation (r2 = 0.906, XV r2 = 0.952, 
BS r2 = 0.844, BS r2 Err = 0.236) and external 
validation using test set (r2

pred = 0.836). Due to 
large number of descriptors available, they 
were selected based on their correlation to 
biological property (r2 < 0.10) or that are more  

 
 
than (r2

pred) were discarded. This could give 
light to the structural features important for 
CB1 binding as well as help to club the most 
correlated descriptors which could be further 
explored in QSAR modeling. 
 
Table 5: Values of different statistical parameters 
 
Parameters Value Value Value Value Value

r2 0.906 0.905 0.904 0.904 0.904 
XV r2 0.952 0.951 0.951 0.951 0.951 
BS r2 0.844 0.838 0.832 0.831 0.831 
LSE 0.048 0.049 0.049 0.049 0.049 
r2

pred 0.836 0.772 0.736 0.714 0.746 

 
Where r2 is Predictive correlation co-efficient, 
XV r2 is cross validation correlation co-
efficient, BS r2 is Bootstrapping correlation 
coefficient, LSE is least square error, r2 pred is 
the predicted correlation coefficient calculated 
from the predicted activity of the test set 
compounds 
 
3.3 Statistical description: 
The statistical models generated in our studies 
were investigated using the PLS leave-many-
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out (LMO) method. The predictive ability of 
the models was assessed by their full cross-
validated r2 (q2) values. Internal validation 
methods leave-one-out and LMO (with 10 
groups of compounds) were used to determine 
the optimum number of PLS components and 
the stability of the models. The number of 
components used in the final non-validated 
model was optimized to give the highest q2 
value and the lowest standard error of 
prediction. The non-cross-validated models 
were assessed by the conventional correlation 
coefficient r2 and F-values. 
QSAR’s most general mathematical form is: 

Activity = f(physiochemical properties 
and/or structural properties). 

The inter correlation of descriptors with each 
other and with the biological activity are given 
in the table. The table shows that descriptors 
are independent of each other. The important 
descriptors appeared in the equation I is shown 
in the table 1. The calculated correlations 
among the seven descriptors used in the 
equation and activity are represented in  
Table 6. Except Atype_Cl_90 and Jurs-FPSA-3 
descriptor, other all the descriptors shows 
positive correlation with activity. Different 
types of descriptors are none other than number 
of molecular properties which are calculated in 
a new model of QSAR relationships.  The 1st 
descriptor CHI-2 comes is molecular 

connectivity indices representing topological 
descriptors. In the best equation, this descriptor 
shows positive and good correlation with 
activity.  
Kier & Hall valence-modified connectivity 
index (CHI-2): CHI-2 is Kier and Hall 
molecular connectivity index of order 2. The 
connectivity indices belong to topological class 
of descriptors and are single valued parameters 
that can be calculated from the 2D graph 
representation of molecules. They characterize 
structures according to their size, degree of 
branching and overall shape26. This index is a 
refinement of the molecular connectivity index, 
where a vertex sub graph valence d is enhanced 
to dv to take into account electron configuration 
of the atom represented by the vertex:  

 
where Zv is the number of valence electrons in 
the atom, Z is its atomic number, and h is the 
number of hydrogens bound to it. This formula 
is designed to reproduce the unmodified 
molecular connectivity index for saturated 
hydrocarbons, for which dv = d. However, dv 
distinguishes between multiple and single 
bonds. The denominator introduces further 
distinction between element rows due to the 
presence of the atomic number Z27, 28.

 
Table 6: Correlation matrix for the biological activity and the descriptors used in model 1 

 CHI-2 
Jurs-

DPSA-3 
Atype_Cl_90 MW 

Atype_ 
Unknown 

Jurs-
FPSA-3 

MR Activity 

CHI-2 1        

Jurs-DPSA-3 0.537 1       

Atype_Cl_90 -0.092 0.925 1      

MW -0.053 -0.053 -0.553 1     

Atype_Unknown 0.207 0.208 0.207 0.207 1    

Jurs-FPSA-3 0.199 0.199 0.199 0.199 0.199 1   

MR 0.373 0.373 0.373 0.373 0.373 0.373 1  

Activity 0.505 0.086 -0.133 0.919 0.118 -0.047 0.773 1 

 
(2) 
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The connectivity indices belong to topological 
class of descriptors and are single valued 
parameters that can be calculated from the 2D 
graph representation of molecules. They 
characterize structures according to their size 
degree of branching and overall shape. 
However, while similar molecules are expected 
to exert similar activities, there is no rigorous 
or unambiguous method for defining and 
calculating their similarity. It may be expected 
that, in certain cases, overall molecular 
similarity will produce similar activity, 
whereas, in other cases, only the molecular 
similarity of certain (active) regions of the 
molecules will give rise to similar activities. 
These results suggest that by modifying the 
shape of the molecule which produces the 
subgraphs of order 2 would enhance the 
activity of the CB1 inverse agonists. Further, 
the descriptors Jurs-DPSA-3 and Atype_Cl_90 
reveal that the overall shape, size flexibly and 
branching in the molecules is important for 
activity and should be considered during lead 
optimization and drug designing. 
 Atype_C_90 is one of the various atom type 
AlogP descriptors that are used to estimate the 
logP of molecule which characterizes the 
lipophilicity. Ghose and Crippen29 developed 
these descriptors that describe the individual 
atom type contribution towards the overall 
hydrophobicity of molecules. Heavy atoms like 
carbon, oxygen, nitrogen, sulfur, halogens 
along with hydrogens are categorized into 110 
atom types. The number of atom types has 
elevated to 120 30 after further revisions. Each 
AlogP atom-type value represents the number 
of atoms of that type in the molecule.  
In the present set of CB1 inverse agonist 
molecules, the carbon type Atype_C_90 is 
surrounded by aromatic ring connected to 
halogens or oxy-alkyls or alkyls. 
Hydrophobicity associated with the aromatic 
ring environment surrounding the C atom is 
favorable for the CB1 inverse agonistic 
activity. As this descriptor is having positive 
coefficient, increasing the hydrophobic nature 
of the neighboring entities encompassing C 
atom would increase the activity of CB1 
receptor inverse agonists 

In the present QSAR equation, the AlogP 
descriptor (Atype_C_90) which is an indicator 
of lipophilicity of the molecule is having a 
negative coefficient. This implies that as the 
lipophillic nature of the molecule increases 
further the molecule passes through the cell 
membrane more effectively and thus increases 
the activity towards the receptor.  
On the contrary, the molecular weight and 
Atype_C_90 descriptor is having a negative 
coefficient value. Based on these two statistical 
descriptors, it can be suggested that a balance 
between size of the molecule and addition of 
lipophillic groups has to be maintained to 
optimize the activity, as larger increase in the 
weight of the molecule may hinder its 
penetration through the cell membrane and its 
interaction with the receptor. This finding may 
be important as the CB1 receptor falls in GPCR 
family of proteins which are trans-membrane 
proteins characterized by seven trans-
membrane domains. As shown in table 3, 
except for Atype_Cl_90, MW is having 
positive correlation with all the other 
descriptors (CHI-2, Jurs-DPSA-3, 
Atype_Unknown, Jurs-FPSA-3 and MR) and 
activity. 
The 115 atom types defined in the calculation 
of AlogP90 are now available as descriptors. 
To calculate them, select the entry 
AlogP_atypes in the Thermodynamic family in 
the descriptor table. Each AlogP90 atom-type 
value represents the number of atoms of that 
type in the molecule. An additional atom type 
called Unkown_Type can also be added to the 
table, together with the other AlogP90 atom 
types. A value greater than zero for this 
descriptor indicates the presence of atoms that 
couldn't be classified as any of the defined 
AlogP90 atom types. The AlogP atom Types 
control panel allows you to select the elements 
to be taken into account. 
Further, the descriptors Jurs-DPSA-3 and Jurs-
FPSA-3 reveal that the overall shape, size 
flexibly and branching in the CB1 inverse 
agonist molecules is important for activity and 
should be considered during lead optimization 
and drug designing. Jurs descriptors mainly 
based on partial charges mapped on surface 
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area. This set of descriptors31 combines shape 
and electronic information to characterize 
molecules. The descriptors are calculated by 
mapping atomic partial charges on solvent-
accessible surface areas of individual atoms. A 
total of 30 different descriptors are included in 
this set. Difference in atomic charge weighted 
surface areas (DPSA-3) where atomic charge 
weighted positive solvent-accessible surface 
area minus atomic charge weighted negative 
solvent-accessible surface area. As shown in 
table 3, except for Atype_Cl_90 and MW, is 
also having positive correlation with all the 
other descriptors (CHI-2, Atype_Unknown, 
Jurs-FPSA-3, MR) and activity. Jurs-FPSA-3 
also comes under Jurs descriptors.   
Jurs-FPSA-3 stands for fractional charged 
partial surface areas is set of six descriptors 
obtained by dividing descriptors 1 to 6 by the 
total molecular solvent-accessible surface area. 
This descriptor shows negative correlation for 
predicted activity and positive correlation over 
all other descriptors and activity. 
MW is molecular weight of the compound 
which comes under structural descriptors. 
Molecular weight is an important parameter 
that signifies the size of the molecule. In the 
dataset indicated good QSARs could be 
developed utilizing molecules with molecular 
volume and molecular weight providing good 
quantification of molecular size. It is useful to 
illustrate the influence of the shape and 
structural features of a molecule. 
One of the most important chemico-physical 
properties used in QSAR studies is the molar 
refractivity (MR). It has been shown to be 
related to lipophilicity, molar volume and steric 
bulk. MR is Molar refractivity calculated as  
 

 
 
Where n is the refractive index, MW is the 
molecular weight, and d is the compound 
density. So, molar refractivity depends on 
molecular weight and density of the compound. 
MR comes under thermodynamic descriptors. 
The inter correlation of various descriptors was 

checked and the correlation matrices are given 
in Table 3, MR showing positive correlation 
with all the descriptors. As this descriptor is 
having positive coefficient, increasing 
lipophilicity, molecular weight and density 
would show positive to the activity of CB1 
receptor inverse agonists. 
The atom-type E-state indices are molecular 
descriptors encoding topological and electronic 
information related to particular atom types in 
the molecule20, 32. They are calculated by 
summing the E-state values of all atoms of the 
same atom type in the molecule. Each atom 
type is first defined by atom identity, based on 
the atomic number Z, and valence state, itself 
identified by the valence state indicator (VSI). 
Each atom type E-state symbol is a composite 
of 3 parts. The first part is “S” which refers to 
the sum of the E-states of all atoms of the same 
type. The second part is a string representing 
the bond types associated with the atom (“s”, 
“d”, “t”, “a” for single, double, triple and 
aromatic bonds, respectively). The third part is 
the symbol identifying the chemical element 
and, if any, bonded hydrogens, such as CH3, 
CH2, F etc. The E-state indices encode not only 
the information about the topological 
environment of an atom, but also the electronic 
interactions from other atoms in the molecule. 
Thus, E-state is able to provide useful 
information on structure features that mostly 
relate to the property to be modeled33.   
While understanding the SAR of CB1 inverse 
agonists in the present study basing on the 
QSAR equation, it is possible to prioritize the 
contributions provided by the descriptors 
incorporated in the model. Out of the 7 
descriptors, structural descriptors showing 
highest positive coefficients as compared to 
other descriptors. Molecular weight is the main 
criteria for the compounds to predict activities 
in the study. MW showing highest positive 
coefficient value and it has good impact in 
predicting activities. Another chemico-physical 
properties used in QSAR studies is the molar 
refractivity (MR). It has been shown to be 
related to lipophilicity. This descriptor is also 
showing good correlation coefficient with 
activity. The next descriptor in terms of 
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contributory priority to SAR of CB1 inverse 
agonists in the present study is Kier & Hall 
valence-modified connectivity indices CHI-2 
with positive coefficient is having the better 
weightage. Especially, CHI-2 index with good 
coefficient has to be considered while 
optimizing the molecule. From the above three 
descriptors contributions we can suggest that 
the shape, size and lipophilicity of the 
molecules is an important factor effecting CB1 
inverse agonistic activity. 
The next priority in considering the descriptors 
contributing to the activity as per the QSAR 
equation is for Atype_unknown descriptor with 
a positive coefficient, which is followed by  
Jurs-DPSA-3 and Atype_Cl_90 with Jurs-
FPSA-3 descriptors having positive and 
negative coefficients, respectively. The inverse 
relationship between Atype_Cl_90 with Jurs-
FPSA-3 descriptors indicate that the 
hydrophobic property and fractional charged 
partial surface areas of the molecules should be 
provided by incorporation of such groups 
which do not much increase the size but 
increase the activity. At the same time when 
CHI-2 descriptors contribution is taken into 
consideration, it can be implicated that the 
small hydrophobic groups having link with 
chlorine atom on the R3 and R4 positions of the 
scaffold may increase the activity of the CB1 
inverse agonists. 
 
4. CONCLUSIONS    
The QSAR model of cannabinoid receptor 1 
inhibitory activity have been developed based 
on topological, E-state, spatial and 
thermodynamic descriptors to estimate and 
predict relative inverse agonistic activity of 87 
diphenyl-pyridine derivatives. The predictive 
ability of model was demonstrated by using 
leave one out cross validation technique, 
randomization test as well as external test set 
prediction. The results presented above show 
that these descriptors can be used to describe 
the structure activity relationship of cb1 inverse 
agonist and its performance based on statistical 
parameters is satisfying. 
The top 5 equations/models generated by the 
G/PLS statistical method using a training set of 

56 cannabinoid receptor 1 inverse agonists and 
validated these models with 31 test set 
compounds.  Out of these 5 equations the 
equation I having the particular combination of 
7 descriptors was having the best predictive 
ability compared to the rest of the equations. 
The model signifies the importance of 
Hydrophobicity associated with the aromatic 
ring environment surrounding the C atom is 
favourable for the CB1 inverse agonistic 
activity. The small hydrophobic groups having 
link with chlorine atom on the R3, R4 positions 
of the scaffold may increase the activity of the 
CB2 agonists.  Further, overall shape size 
flexibly and branching in the CB1 inverse 
agonist molecules is important for activity and 
should be considered during lead optimization 
and drug designing. The structural and 
topological descriptors were found to play a 
major role in determining inhibitory activity for 
Cb1 receptor. The structural descriptors 
highlight the spatial importance for designing 
inhibitors for Cb1. Thus the present work may 
helpful in optimizing the CB1 inverse agonists. 
  
References:    
[1]. D. Cota, G. Marsicano, M. Tschöp, Y. Grübler, C. 

Flachskamm, M. Schubert, D. Auer, A. 
Yassouridis, C. Thöne-Reineke, S. Ortmann, F. 
Tomassoni, C. Cervino, E. Nisoli, A. C. Linthorst, 
R. Pasquali, B. Lutz, G. K. Stalla, and U. Pagotto. 
The endogenous cannabinoid system affects 
energy balance via central orexigenic drive and 
peripheral lipogenesis. J. Clin. Invest. 112 (3): 
423-431 (2003). 

[2]. G. Di Carlo, A. A. Izzo.  Cannabinoids for 
gastrointestinal diseases: potential therapeutic 
applications. Expert Opin. Invest. Drugs 12 (1): 
39-49 (2003). 

[3]. R. G. Pertwee. Cannabinoid receptor ligands: 
clinical and neuropharmacological considerations, 
relevant to future drug discovery and 
development. Expert. Opin. Investig. Drugs 9 (7): 
1553-1571 (2000). 

[4]. J. N. Xiang, J. C. Lee. Pharmacology of 
cannabinoid receptot agonists and antagonists. 
Annu. Rep. Med. Chem. 34: 199-208 (1999). 

[5]. F. Barth, M. Rinaldi-Carmona. The development 
of cannabinoid antagonists. Curr. Med. Chem. 
6(8): 745-755 (1999). 

[6]. M. Rinaldi-Carmona, F. Barth, M. Héaulme, D. 
Shire, B. Calandra, C. Congy, S. Martinez, J. 
Maruani, G. Néliat, D. Caput, P. Ferrara, P. 

Rituparna Sarma et al / Journal of Pharmaceutical Science and Technology Vol. 3 (1), 2011,477-493

491



Soubrie, J. C. Breliere, G. Lefur. SR141716A, a 
potent and selective antagonist of the brain 
cannabinoid receptor. FEBS. Lett. 350 (2-3): 240-
244 (1994). 

[7]. G. G. Muccioli, D. M. Lambert. Current 
knowledge on the antagonists and inverse 
agonists of cannabinoid receptors. Curr. Med. 
Chem. 12 (12): 1361-1394 (2005).  

[8]. D. L. Hertzog. Recent advances in the 
cannabinoids. Expert Opin. Ther. Pat. 14 (10): 
1435-1452 (2004).  

[9]. J. H. M. Lange, C. G. Kruse. Recent advances in 
CB1 cannabinoid receptor antagonists. Curr. Opin. 
Drug Discov. Dev. 7: 498-506 (2004). 

[10]. J. H. M. Lange, C. G. Medicinal chemistry 
strategies to CB1 cannabinoid receptor 
antagonists. Drug Discov. Today 10: 693-702 
(2005). 

[11].  T. J. Hou, J. M. Wang, N. Liao, X. J. Xu. 
Applications of genetic algorithms on the 
structure–activity relationship analysis of some 
cinnamamides. J. Chem. Inf. Comput. Sci. 39: 
775–781 (1999). 

[12]. S. Oloff, R. B. Mailman, A. Tropsha. Application 
of validated QSAR models of D1 dopaminergic 
antagonists for database mining. J. Med. Chem. 
48 (23): 7322–7332 (2005). 

[13]. J.L. Medina-Franco, A. Golbraikh, S. Oloff, R. 
Castillo, A. Tropsha. Quantitative Structure-
Activity Relationship Analysis 
of Pyridinone HIV-1 Reverse Transcriptase 
Inhibitors Using The k Nearest Neighbor Method 
and QSAR-Based Database Mining. J. Comput. 
Aided Mol. Des. 19 (4): 229–242 (2005).  

[14]. M. Shen, C. Beguin, A. Golbraikh, J. P. Stables, 
H. Kohn, A. Tropsha. Application of Predictive 
QSAR Models to Database Mining: Identification 
and Experimental Validation of Novel 
Anticonvulsant Compounds. J. Med. Chem. 47 
(9): 2356–2364 (2004). 

[15]. L. C. Meurer, P. E. Finke, S. G. Mills, T. F. 
Walsh, R. B. Toupence, J. S. Debenham, M. T. 
Goulet, J. Wang, X. Tong, T. M. Fong, J. Lao, M. 
T. Schaeffer, J. Chen, C. P. Shen, D. Sloan 
Stribling, L. P. Shearman, A. M. Strack, L. H. 
Van der Ploeg. Synthesis and SAR of 5,6-
diarylpyridines as human CB1 inverse 
agonists.Bioorg. Med. Chem. Lett 15 (3): 645-651 
(2005). 

[16]. J. S. Debenham, C. B. Madsen-Duggan, T. F. 
Walsh, J. Wang, X. Tong, G. A. Doss, J. Lao, T. 
M. Fong, M. T. Schaeffer, J. C. Xiao, C. R. 
Huang, C. P. Shen, Y. Feng, D. J.  Marsh, D. S. 
Stribling, L. P. Shearman, A. M. Strack, D. E. 
MacIntyre, L. H. Van der Ploeg, M. T. Goulet. 
Synthesis of functionalized 1,8-naphthyridinones 
and their evaluation as novel, orally active CB1 

receptor inverse agonists. Bioorg Med Chem Lett. 
16 (3): 681-685 (2006).  

[17]. C. B. Madsen-Duggan, J. S. Debenham, T. F. 
Walsh, R. B. Toupence, S. X. Huang, J. Wang, X. 
Tong, J. Lao, T. M. Fong, M. T. Schaeffer, J. C. 
Xiao, C. R. Huang, C. P. Shen, D. S. Stribling, L. 
P. Shearman, A. M. Strack, D. E. MacIntyre, L. 
H. Van der Ploeg, M. T. Goulet.  Lead 
optimization of 5,6-diarylpyridines as CB1 
receptor inverse agonists. Bioorg. Med. Chem. 
Lett. 17 (7): 2031-2035 (2007). 

[18]. Cerius2 version 4.11, Accelrys Inc., 6985 
Scranton Road, San Diego, CA, USA. 

[19]. C. De Gregorio, L. B. Kier, L. H. Hall. QSAR 
modeling with the electrotopological state indices: 
corticosteroids. J. Comput. Aided Mol. Des. 12 
(6): 557-561 (1998). 

[20]. Kier LB, Hall LH. An electrotopological-state 
index for atoms in molecules. Pharm. Res. 7 (8): 
801-807 (1990). 

[21]. E. Estrada, E. Uriarte. Recent advances on the 
role of topological indices in drug discovery 
research. Curr. Med. Chem. 8 (13): 1573-1588 
(2001). 

[22]. D. Rogers, A. J. Hopfinger. Application of 
Genetic Function Approximation to Quantitative 
Structure-Activity Relationships and Quantitative 
Structure-Property Relationships.  J. Chem. Inf. 
Comput. Sci. 34 (4): 854-866 (1994). 

[23]. L. M. Shi, F. Yi, T. G. Myers, P. M. O’Connor,  
K. D. Paull, S. H. Friend, J. N. Weinstein. Mining 
the NCI anticancer drug discovery databases: 
genetic function approximation for the QSAR 
study of anticancer ellipticine analogues. J. Chem. 
Inf. Comput. Sci. 38 (2): 189-199 (1998). 

[24]. A. Golbraikh, A. Tropsha. Beware of q2!. J Mol 
Graph Model. 20 (4): 269-276 (2002). 

[25]. A. Afantitis, G. Melagraki, H. Sarimveis, P. A. 
Koutentis, J. Markopoulos, O. Igglessi-
Markopoulou. Investigation of substituent effect 
of 1-(3,3-diphenylpropyl)-piperidinyl 
phenylacetamides on CCR5 binding affinity using 
QSAR and virtual screening techniques. J Comput 
Aided Mol Des. 20 (2): 83-95 (2006). 

[26]. J. Liu, L. Yang, Y. Li, D. Pan, A. J. Hopfinger. 
Prediction of plasma protein binding of drugs 
using Kier-Hall valence connectivity indices and 
4D-fingerprint molecular similarity analyses. J 
Comput. Aided Mol Des. 19 (8): 567-583 (2005). 

[27]. L. B. Kier, L. H. Hall. In: Molecular Connectivity 
in Chemistry and Drug Research. Academic. 
Press: New York. 14: 257 (1976). 

[28]. L. B. Kier, L. H. Hall. Molecular Connectivity in 
Structure-Activity Analysis. In: (1st ed.), 
Chemometric Series, Research Studies Press 
LTD., England. 9:262 (1985). 

[29]. A. K. Ghose; G. M. Crippen. Atomic 
Physicochemical Parameters for Three-

Rituparna Sarma et al / Journal of Pharmaceutical Science and Technology Vol. 3 (1), 2011,477-493

492



Dimensional Structure-Directed Quantitative 
Structure-Activity Relationships I. Partition 
Coefficients as a Measure of Hydrophobicity. J. 
Comput. Chem. 7 (4): 565-577 (1986). 

[30]. V. N. Viswanadhan, A. K. Ghose, G. R. 
Revankar, R. K. Robins. Atomic physicochemical 
parameters for three dimensional structure 
directed quantitative structure-activity 
relationships. 4. Additional parameters for 
hydrophobic and dispersive interactions and their 
application for an automated superposition of 
certain naturally occurring nucleoside antibiotics. 
J. Chem. Inf. Comput. Sci. 29 (3): 163–172 
(1989). 

[31]. D. T. Stanton, P. C. Jurs. Development and Use of 
Charge Partial Surface Area Structural 
Descriptors in Computer-Assisted Quantitative 
Structure-Property Relationship Studies. Anal. 
Chem. 62 (21): 2323-2329 (1990). 

[32]. L. B. Kier, L. H. Hall. Molecular Structure 
Description: The Electrotopological State, 
Academic Press, San Diego, CA.  ISBN 0-12-
406555-4 (1999). 

[33]. K. Rose, L. H. Hall. Modeling blood-brain barrier 
partitioning using the electrotopological state. J 
Chem Inf Comput Sci. 42 (3): 651-666 (2002). 
 

 
 

Rituparna Sarma et al / Journal of Pharmaceutical Science and Technology Vol. 3 (1), 2011,477-493

493




